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POISSON STABILITY OF REVERSIBLE SYSTEMS-f 

S. P. SOSNITSKII 

Kiev 

(Received 17 September 1991) 

An investigation is presented of the stability in Poisson’s sense of reversible systems in which the phase 

volume is not invariant, a particular example of which is non-holonomic systems. Criteria are proposed for 

the stability of such systems in Poisson’s sense, and the existence of integral invariants is discussed. 

1. CONSIDER an autonomous system of differential equations 

dx/dr =X(x) 

t Prikl. Mat. Mekh. Vol. 56, No. 4, pp. 580-586, 1992. 

(1.1) 
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where X(x) E C’(D(x) CRn), the domain D(x) is an invariant set, x = (xi, . . . , x,)~, and 

X=(X1,...,&)=, tER 

As we know [l, 21, if v is the volume of a domain AC D: 

u= mes(A)=/dx, A(t=O)=& 
A 

then Liouville’s Theorem states that 

‘c =i divXdx, dx=dxl.. .dx, 

and, in particular, if divX=O, then v is an invariant of system (1.1): 

,dx=i dx 
A 0 

and the methods of ergodic theory are applicable [3]. A similar situation arises if divX f 0 and 
system (1.1) has the invariant [l] 

U’ = mes(A) =i p(x) dx (1.2) 

where p(x) E C’(D(x) CR”) is a positive function satisfying Liouville’s equation [l] 

div(pX) = 0 (1.3) 

Unfortunately, a solution p(x)EC’(D(x)) of Eq. (1.3) does not always exist [4, 51. It will 
therefore be interesting to pick out a class of systems with ergodic properties-in particular, stable 
systems in Poisson’s sense (Poisson stable systems) [l, p. 363]-without linking the question to the 
existence of an integral invariant (1.2). 

Lemma I. Let !J c D(x) be a bounded invariant domain of system (1.1). If 

sup I ; div X(x(7)) dr! < QO 
tER 0 

V y = {x(t) : tE R} C 0, then almost all trajectories yC 0 are Poisson stable. 

(I-4) 

Proof. Augment system (1.1) by adding the equation 

dx,+r/dt = -x,+tdivX(x) 

thus expressing the entire system in the form 

X’* =x+(x*) 

(1.5) 

(1.6) 

where x* = (xi, . . . , ht+l)T, x*(x*) = (X7 - ~,,+idivX)~~ D x R. Since divX*(x*) ‘0, the phase volume of 
system (1.6) is an invariant. 

System (1 .l) appears here as a separate constituent of (1.6). Assuming that its solution 

x=p(r,x,)ECf$$ X,ED 

is known, we integrate Eq (1.5). The result is 

(1.7) 

t 
x,+l(~)=x,+1(0)ex~(-~(divXI~=~(~ x,))d~) 

0 
(1.8) 

It follows from (1.7) and (1.8) that x,+iE C+, and the solution of (1.6) 

X* = ti(r,x:), x6 ED x 1px,+r> teR 

is a flow ([6, p. 481; see also [l, p. 3461). 
By assumption the solution x,+1(t) is bounded, V ycfl, x,+1 (0) < 00; hence the invariant set (1.6) is also 

bounded: 
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$2. = n x Xppl, X,+1(0) E IO, bl, 0 < b < - 

The set a* has positive Lebesgue measure in R”+l. Therefore, by Poincare’s Recurrence Theorem [ 1-3, 71, 
almost all trajectories y* CR* are Poisson stable. Hence, using the equality [8, p. 3101 

mess-r* = mes Iz”(n) mes&~+l) 

we conclude that almost all trajectories yC R are Poisson stable in the sense of relative Lebesgue measure in 0. 
This completes the proof of Lemma 1. 

Corollary. The conclusion of Lemma 1 remains true if inequality (1.4) holds only up to a set of 
trajectories of Lebesgue measure zero. 

This lemma, considered as a sufficient condition for Poisson stability, is not constructive. It would 
therefore be interesting to specify a class of systems for which Poisson stability could be investigated 
without having an explicit expression for div X[x(t )] valid for solutions of system (1.1). It turns out 
that the reversible systems constitute such a class. 

2. Consider the holonomic reversible system [9, p. 831 

x” = f(x, x’), f(x, Y) = f(k -Y) 

f(x,xjEC’(D(x,xjC R’“) 

Expressing (2.1) in the form of equations of the first order 

x’ = y y’ = f(x. y) 

(2.1) 

(2.2) 

we see that replacing t by (-1) in these equations is equivalent to the substitution (x, y)‘+= (x, -y). 
Thus, as a corollary of reversibility, we obtain: with everv bounded (unbounded) solution of system 
(2.2) for TV R+ = (0, m[ one can associate 
solution for tE R- = l--w, 01. 

(by the rule (x, y)r+ (x, ly)r) a bounded (unbounded) 

Theorem 1. Let f2 C D(x, x’) C R2” be a 
all trajectories yC Sz are Poisson stable. 

bounded invariant domain of system (2.1). Then almost 

Before proving this theorem, we need the following lemma. 

Lemma 2. Under the assumptions of Theorem 1, for almost all (x, x’)~C R, 

Proof. Augment system (2.2) by adding the equation 

z’=-zdivF(x,y) 

and then express the augmented system in the form 

w.=W(w), w = (x, y, z)T 

W =(F, -zdivF)T, F = (Y> f(x> Y))~ 

Since div W = 0, the phase volume is an invariant of this system. Since 

divF(x,y)= 2 afi 
i=l ayi 

div F(x, y)I y_,(_y) = -divF(x, y) 

the substitution t+ --t in Eqs (2.4) is equivalent to (x, y, z)-+ (x, -y, z). 
By (2.3) 

(2.3) 

(2.4) 

(2.5) 
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t(t)=z(O)exp(-;divFdr) 
0 

(2.6) 

and, by (2.59, replacing t by (-t) in this equation is equivalent to replacing divF by (-divF). 
Since the initial system (2.1) is invariant under the substitution of -t for t, so that it is possible to 

convolve the equations x* = -y, y’ = -f(x, y), which are obtained from (2.2) by again replacing c by 
(-t) in (2.1), it follows that the transformation (x, y)r+(x, -y)r leaves any trajectory y of system 
(2.2) invariant. Therefore, if we assume that the component z(t) of the solution w of system (2.4) is 
not bounded as t+ a~( - co), it follows from (2.6) that, conversely, as t+ -w(m) it will tend to zero. 

Let w be the image of R in (x, y)-space and o* C o an invariant subset of trajectories of (2.2), such 
that 

tti;:(R_) / ,& $, dT = -* 
I 

Suppose that mes (o*) >O. It then follows from (2.6) and (2.7) that 

lim z(r)=0, V(xo,yf#kd 
r---m (t-) 

irrespective of the value of z(O) E] 0, b[, 0 <b < CO. 
Thus, 

(2.7) 

lim mes(w’ X z) = lim 
I+--((+-~ t-* --oD (+s) 

mesR ,, (a* ) mesR (z) = 0 

contrary to the invariance of the phase volume of system (2.4). Thus, if trajectories of (2.2) 
satisfying (2.7) exist, their Lebesgue measure must be zero. This proves Lemma 2. 

We will now prove Theorem 1. 
By Lemma 2, 

sup I f divF(x(r), x’(7))d71 <=J 
IER 0 

for almost any trajectory y = {(x(t), x’(t)) : f E R} C a. Hence, by the Corollary to Lemma 1, we 
complete the proof of the theorem. 

3. Consider a non-holonomic system 

d aL 
E )Sq=O, qEDC R” X R’ 

&‘ti= g bij(q)qiy i=l,2,...,1 
j=1 

L(q,q’)=T(q,q.)-n(q)=lAq’TA(Q)q’--(q) 

(3.1) 

(3.2) 

where L(q, q’), bv(q) E Ci (D) and the quadratic form q’rA (0) q’ is positive-definite. Let us assume 
first that the Lagrangian L and the coefficients bii(q) do not depend on the coordinates qn+l, . . . , 
q,+l. Then system (3.1), (3.2) reduces to Chaplygin’s equations [lo, 111: 

d aL* aL* 
--_- 
dt aq; aqi i=1m=1 

$,,, = abr#&, - abi, /aq/, i, m = 1,2, . . . , n 

(3.3) 

where the asterisk indicates that the generalized velocities qi+i have been eliminated from L and 
dLh,+i by using the constraint equations (3.2). 

As the quadratic form qDTA(0)q’ is positive-definite, it follows that Eqs (3.3) are solvable for the 
highest-order derivatives in some domain D*(q, q’) C R2’, and are reduced to the form 
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s”=JI(Q,9’)=~1(Q)+312(4,9’) 

where t,b(q, q’) E C’(D*(q, q’)) and the function I,%~ is quadratic in 
thus obtain a reversible system of the form (2.1). 

(3.4) 

9’. Since tiq, p) = tiq, P), we 

Theorem 2. Let A-I C D*(q, q’) CR*” be a bounded invariant domain of system (3.3). Then almost 
all trajectories y C R are Poisson stable. 

Now suppose that system (3.1), (3.2) d oes not contain constraints of the type characteristic for 
Chaplygin’s equations. Then we obtain the more general Voronets equations [12, 131: 

d aL* aL* --= a”l+f: ,_ 
dt aqj aqi i=l aqn+i 

bii + (3.5) 

aL 
A E(- 

i=lm =I aqh+i 

abij %n p! =-_- 

Irn Wm aqj 
A(- 

a&j 
b,, - 

ah 

p=l a4n+r 
- bpj) 
ah+@ 

These equations must be considered together with the constraint equations (3.2). In this case the 
equations of motion do not reduce to equations of the form (2.1). 

Theorem 3. Let R c D*(q, q’) CR nf’ x R” be a bounded invariant domain of system (3.2)) (3.5). 
Then almost all trajectories y CR are Poisson stable. 

Proof. Making the substitution 

we transform system (3.2), (3.5 to the form 

aH n aH 
qj= apl, j=1,2 ,... ,n; 4,+1 i_1 = C bli - apj (3.6) 

bij + Vj (4, P) 

Hz i qjpj-L’ = + PWl) P + WI) 
j=l 

pTB(0) p > p’ II pll 2, /.I* = const 

qi = aHjapj 

Since cpi(q, p) is a quadratic function of p, it follows that 

cpi(4, P)=(pi(Q* -P) (3.7) 

It follows from the structure of Eqs (3.6) that replacing t by (-t) in them is equivalent to the 
substitution (q, p)+ (q, -p). Denoting the vector of the right-hand sides of system (3.6) by V(q, p), 
we have 

a 
divV(q, p)= i - 5 bii aH + 5 !!!!! 

i=l aqn+i i=l apj j=l apj 

whence, in view of (3.7), we get 

divV(q, p)I,_,~._,~ =-divV(% P) 
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We have thus arrived at the situation considered in the proof of Theorem 1, so that we can infer 
the truth of Theorem 3, since equations (3.2), (3.5) are invariant to the replacement of t by -t. 

4. Consider a non-autonomous system 

X” = f(t, x, X’) 

f(t, x, x’)E C’;_&2’(R X D, D CR;;.) (4.1) 

Assuming that solutions of system (4.1) with initial data in a certain domain D*(x, x’) CD can be 
continued to the entire real line t E R, we can generalize the concept of reversibility, defining it by 
the following equality: 

f(t, x, Y) = f(-t, x, -y) (4.2) 

We now write Eqs (4.1) in the form 

x*=y, y.=f(t,x,y) (4.3) 

Theorem 4. Assume that the reversible system (4.1) satisfies the following conditions: 
1. There exists a bounded set of trajectories G = {(x(t), x’(t)): tER} CD; 
2. mes(G) > 0. 
Then system (4.3), as an equivalent form of system (4.1), has an integral invariant of the form 

u* =J p(t, x, Y) dxdy, a C G I x-+y 
=G’ (4.4) 

with density 0 < p(t, x, y) E C,, (~JJ) (R X G *) bounded almost everywhere in the set R x G *. 

Proof Assuming that a solution of system (4.3) is known, we write it as 

Consider the auxiliary equation 

z’ = -z div, f(t, x, y), div, f = $!I s 
i=l ayi 

(4.6) 

replacing x, y by the expressions obtained from (4.5). Integrating (4.6), we obtain 

z = ao(t, to, x0, Yo), a = const (4.7) 

where, by our initial assumptions in (4. l), (YE C~$$‘) . The n, inverting the vector equation (4.5) 
and substituting the result into (4.7), we have 

z =a/?(t, to, x, y) E C~;~ylp’) (R X D) 
0 (4.8) 

By (4.6), p>O, V(t,, t, x, y)ERx D. 
Using (4.8), we can write Eq. (4.6) in the form 

w 
“‘ar + g y+ ap f)=--afidivyf 

ay 

Dividing both sides of (4.9) by the constant a, we get 

ap/at + div(@F) = 0, F = (y, f)T 

On the other hand, we have 

(4.9) 

Hence, putting /3(t, 0, x, y) = p(t, x, y), we conclude that there exists an integral invariant (4.4) 
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with density 0 <pi C,, WJ) To complete the proof, we need only observe that the fact that p is . 
bounded almost everywhere in R x G * can be proved by applying the arguments used to prove 
Lemma 2 to system (4.3), (4.6). 

Corollaries. 1. The following estimate is true: 

hr < mes(A,) Q h2, O< hi=COnSt, i= 1,2 

where 
mes(A,) =Li, dxdy 

0-C mes(Al,=,O)=mes(A,)<-, A0 CC* 

2. An equilibrium position of the reversible system (4.1) cannot be asymptotically stable. 
3. Under the assumptions of Theorem 3, assuming moreover that f(t, x, x’) is a periodic function 

of t, we can conclude that Poisson stability holds almost everywhere in the set G. 

The corollaries can be proved using the well-known scheme of [14, p. 2141. 

Remark. The proof of Theorem 4 enables one to conclude that there exists an integral invariant with density 
depending on t even in the most general case, when the solutions of a non-autonomous system 

x’ = X(f, x) 

satisfy the continuation property, provided that the right-hand sides of the system are sufficiently smooth. 
However, the question of whether the density p(t, x) is bounded in this situation remains open. 

5. The Remark in Sec. 4 may be used as a guiding argument to obtain criteria for the non-existence of 
integral invariants of type (1.2) for autonomous systems (1.1). In particular, we have the following theorem, 
which is similar in content to Theorems 1 and 2 of [5]: 

Theorem 5. If X(x)EC’(D(x)) (ral) in system (1.1) and there exists a bounded (positive or negative) 
semi-trajectory yf( -) = {x*(t) : tE R+(R-)} such that 

1. ,+(-) CD(X) 

2. 
hf_) ~dhxfx*(T))dr. -- 

then system (1.1) has no integral invariant of type (1.2) in the domain D 

Proof. Suppose the contrary. Then there exists a positive function p(x) E C’(D(x)) which satisfies Liouville’s 
equation (1.3). Expressing this positive function as p’ = -pdivX and integrating it for x = x*(t), we obtain 

f 
~(x*(1))=p,exp(-ldivX(x*(T))dr) 

0 

Plr=(-J=Po >o 
(5.1) 

By condition 2 of the theorem, Eq (5.1) implies that 

rEiqQ-) p(y(-1(x*)) = - (5.2) 

On the other hand, since 7+(-j, as the closure of the bounded semi-trajectory y+(-), is compact, and 
moreover ++(-)C D, p(x) E C’(D), it follows that maxp(y -+(-)) < 00, contradicting (5.2). This completes the 
proof of Theorem 5. 

Corollary. (see [5]). Let x = 0 be an equilibrium position of system (1.1) near which the system can be 
written in the form 

x’=Ax+o(lixU), A=(q), i,j=1,2 ,..., n 
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Then, if trA # 0, system (1 .l) has no integral invariant of type (1.2) in the neighbourhood of x = 0. 
Theorem 5 should be applied when a bounded particular solution of (l.l), not necessarily reducible to an 

equilibrium position, is known. 
In conclusion, we note that in the context of Poisson stability the reversibility of a system (invariance under 

the substitution of --t for t) may be used as a certain equivalent of invariant measure. 
I wish to thank V. V. Rumyantsev for his comments and interest in this paper. 
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